Archive

Archive for the ‘Sampling’ Category

Non-probability Sampling

November 1, 2010 Comments off

The difference between non-probability and probability sampling is that non-probability sampling does not involve random selection and probability sampling does. Does that mean that non-probability samples aren’t representative of the population? Not necessarily. But it does mean that non-probability samples cannot depend upon the rationale of probability theory. At least with a probabilistic sample, we know the odds or probability that we have represented the population well. We are able to estimate confidence intervals for the statistic. With non-probability samples, we may or may not represent the population well, and it will often be hard for us to know how well we’ve done so. In general, researchers prefer probabilistic or random sampling methods over non-probabilistic ones, and consider them to be more accurate and rigorous. However, in applied social research there may be circumstances where it is not feasible, practical or theoretically sensible to do random sampling. Here, we consider a wide range of non-probabilistic alternatives.

For more detail follow this link: Non-probability Sampling.

Advertisements
Categories: First Principles, Sampling

Probability Sampling

November 1, 2010 Comments off
The chosen "random" sample

Image by Marco De Cesaris via Flickr

A probability sampling method is any method of sampling that utilizes some form of random selection. In order to have a random selection method, you must set up some process or procedure that assures that the different units in your population have equal probabilities of being chosen. Humans have long practiced various forms of random selection, such as picking a name out of a hat, or choosing the short straw. These days, we tend to use computers as the mechanism for generating random numbers as the basis for random selection.

For more detail follow this link: Probability Sampling.